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Preview of the Talk

• Outline the basic principles of Rietveld refinement
• Give examples of how Rietveld refinement has been 

used to address important problems in chemistry, 
materials science, and solid state physics

• Offer some advice on how to obtain meaningful 
results while avoiding common pitfalls
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Disclaimer

• The talk is intended to be illustrative, not 
comprehensive.

• My choices of examples are what I’m most familiar 
with, not necessarily the most important work.

• My use of Rietveld refinement is usually to 
investigate structure-property relationships, not to 
determine structures.
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How is structural information manifest in a 
powder diffraction pattern?

1. Unit cell dimensions determine peak positions 
2. Atom positions and thermal vibrations determine peak intensities 
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Diffraction profile of Y2O3 contains 198 independent 
Bragg peaks (0.5≤d≤4.0 Å).  How many parameters 
determine all the peak positions and intensities?

1. Unit cell dimensions determine peak positions

dhkl−2 =h2a*2 +k2b*2 +l2c*2 +2hka*b*cosγ *+2hla*c*cosβ*+2klb*c*cosα *

A maximum of 6 parameters: a, b, c, α, β, γ

2. Atom positions and thermal vibrations determine peak intensities

Fhkl = Njb j exp
B j

4dhkl
2
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Y2O3 structure parameters:
unit cell: 1
atom positions:  4
iso. temp. factors:  3 

Where:
Nj site occupancy of jth atom
bj scattering length of jth atom
Bj isotropic temp. factor of jth atom
xj, yj, zj position of jth atom within unit cell 
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Rietveld Refinement:  Simple Definition
• Rietveld structure refinement is a method for estimating the 

intensities of Bragg peaks in a powder diffraction pattern within 
the constraints imposed by a particular unit cell Symmetry and 
crystallographic space group. 

• Moreover, there is no need to extract the individual Bragg 
intensities as an intermediate step. We can extract the physical
variables of interest directly from the diffraction data by 
constrained least-squares minimization. 

This first person to realize and demonstrate this 
was Hugo Rietveld.  
[H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969)]
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Architecture of a Rietveld Refinement Code

Define Assume Measure
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Advantages of Powder Diffraction 
and Rietveld Refinement

• Strict test of a proposed model
• Single crystals not available
• "Real" samples
• Mixed phases
• Quantitative analysis
• Structural changes vs. temperature, pressure, etc.
• Systematic modifications of a known "host" structure
• Defects in a known structure
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The First Rietveld
Refinement in the 

United States?
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The Structure of 
KCN IV

Incorrect
R3m model

Correct
Cm model
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If important results can be obtained from such 
crude data, imagine what can be learned from data 
like these:

benzene -HRPD/ISIS

W. I. F. David and J. D. Jorgensen, in The Rietveld Method, edited by R. A. Young,
(International Union of Crystallography, Oxford Univ. Press, 1993) pp. 197-226
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The Oxygen Defect that 
Lowers Tc in Sn/PbMo6S8

Example of the importance of correlating Rietveld results 
with other data to confirm the validity of the model.

D. G. Hinks, J. D. Jorgensen, H.-C. Li, Phys. Rev. Lett. 51, 1911 (1983)
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HTS Structures
La2-xSrxCuO4 Ya2Cu3O7-x

CuO2 planes
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How does composition/structure 
control the Tc?

La2-xSrxCuO4 YBa2Cu3O7-δ
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Two Structures for YBa2Cu3O6+x

Orthorhombic & SC:
(ordered Cu-O "chains")

Tetragonal & non-SC:
(disorder destroys "chains")
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Controlling Tc Through Synthesis:
The degree of chain order can be varied continuously.

Oxygen content and ordering in 
YBa2Cu3O7-x as a function of 
temperature in 1 atm oxygen.  

Determined by in situ neutron 
powder diffraction

Jorgensen et al., Phys. Rev. B 36, 3608 (1987)
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Charge Transfer Model for HTS

Superconductivity is in the 
metallic CuO2 planes

Carrier concentration is 
controlled by the composition and 
structure of the “charge 
reservoir” layer (blocking layer).
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Evidence for the Charge Transfer Model
YBa2Cu3O7-δ

BVS = e R0 −Ri( )/ 0.37[ ]∑

Cava et al., Physica C 165, 419 (1990)

Jorgensen et al., Phys. Rev. B 41, 1863 (1990)
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And…  There were some surprises.
Time-dependent changes in Tc of Y-123 due 
to room-temperature oxygen diffusion.

For samples quenched from 
high-Temp., Tc changes with 
annealing time at room Temp. 
due to time-dependent charge 
transfer.

Jorgensen et al., Physica C 167, 571 (1990)
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What about chemical inhomogeneity in 
HTS compounds?

Data for La2CuO4 from some 
labs showed what appeared 
to be an insulator mixed 
with a superconductor.  This 
was only seen in samples 
cooled slowly in oxygen (or 
high-pressure oxygen).

Grant et al., Phys. Rev. Lett. 58, 2482 (1987)
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High-resolution neutron powder diffraction showed phase separation 
near room temperature into an oxygen-rich superconducting phase and 
a stoichiometric insulating phase.

SCSC
SC

1 ph.2 phase

Jorgensen et al., Phys. Rev. B 38, 11337 (1988)
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Ultimately, the phase separation was found to be 
much more complex than originally realized, with 
multiple miscibility gaps and staging of the 
interstitial oxygen defects.

Wells et al,, Science 277, 1067 (1997)
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Superconductivity in Ba1-xKxBiO3
(only in the cubic phase)

Superconductivity

Cubic

M
on

o. Ortho.

Rhomb.

Pei et al., Phys. Rev. B 41, 4126 (1990)
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Rietveld Refinement Profiles for Ba1-xKxBiO3 Phases

Cubic Pm3m Mono. I2/m

Ortho. Ibmm Rhom. R3

Pei et al., Phys. Rev. B 41, 4126 (1990)
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Superconductivity in Ba1-xKxBiO3
(only in the cubic phase)

Superconductivity

Cubic

M
on

o. Ortho.

Rhomb.

But, these 
compositions are 
metastable! 
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Because the superconducting composition of 
Ba1-xKxBiO3 is metastable, it must be made in 
a two-step process.

In situ neutron powder 
diffraction was used to 
understand this 
synthesis chemistry.

Pei et al., J. Solid State Chem. 95, 29 (1991)
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Synthesis Chemistry of 
Ba1-xKxBiO3-δ

500° C

25° C

400° C

25° C

700° C

700° C

600° C
KBiO2

KBiO2

Desired Ba0.6K0.4BiO3 composition 
is achieved.

Heating to 400° C in 100% O2 fills 
the oxygen vacancies.

Cooing in Ar gives a single phase, 
but with complex structure due to 
ordered oxygen vacancies.

Heating in 1% O2 or Ar.  KBiO2
impurity phase forms, but, desired K 
solubility is achieved above 700° C.
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Synthesis Chemistry of 
Ba1-xKxBiO3-δ

Oxygen content 
in Ba1-xKxBiO3-δ

KBiO2 impurity 
content

K content in 
Ba1-xKxBiO3-δ

Conclusion:
K solubility is 
controlled by 
the Bi oxidation 
state.

Pei et al., J. Solid State Chem. 95, 29 (1991)
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MgB2: Tc=39 K

Two equivalent views of the structure
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Previous work on hexagonal diborides
by the group of B. Matthias

Increase in Tc with 
increasing amounts of 
Zr substituted in  MoB2

Tc ≈ 11 K for 
Mo0.87Zr0.13B2+x

A. S. Cooper, E. Corzenwit, L. D. Longinotti,
B. T. Matthias, W. H. Zachariasen, Proc. Nat’l.
Acad. Sci., 67, 313 (1970)

T c
(K

)

Volume of unit cell

Note that they claimed the 
materials were B rich.
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Properties of (Mo0.96Zr0.04)xB2 versus x

L. E. Muzzy, M. Avdeev, G. Lawes, M.K. Haas, H.W. Zandbergen, A.P. 
Ramirez, J.D. Jorgensen, and R.J. Cava, Physica C 382, 153-165 (2002)
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Can the stoichiometry of MgB2 be varied?
(i.e., can we make Mg1-xB2?)

Y. G. Zhao et al., Physica C 361, 91 (2001)

When the starting composition is 
made Mg-deficient, MgB4 appears as 
an impurity phase.  This result 
indicates that MgB2 is a 
stoichiometric compound under 
these synthesis conditions (950° C).
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However….

Y. G. Zhao et al., Physica C 361, 91 (2001)

Lattice constants change slightly and Tc decreases slightly.  There is 
some kind of effect that is not yet understood.  Gibb’s phase rule 
appears to be violated.
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MgB2 Synthesis in an Overpressure of Argon Gas

Synthesis furnace:
850° C, 50 atm. Ar

BN crucible

Typical MgB2 samples

D. G. Hinks, unpublished
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Neutron Powder Diffraction Data from MgB2

d-spacing ( )
 1.0     2.0     3.0     4.0    

N
eu

tr
o

n
 c

o
u

n
ts

0

700

1400

J. D. Jorgensen, D. G. Hinks, S. Short,
Phys. Rev. B 63, 224522 (2001)



NICEST, 12 March 2003

Confirmation that the synthesis technique achieves
near-equilibrium conditions
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Mg is also present (<0.05 wt%)

D. G. Hinks, J. D. Jorgensen, H. Zheng, S. Short, Physica
C 382, 166-176 (2002)
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Observation of the expected impurity phases in the
expected amounts shows that MgB2 is a line compound
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Note that the composition appears to be
slightly Mg rich.

D. G. Hinks et al., Physica C 382, 166-176 (2002)
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Refinement of the Mg-site occupancy suggests a 
small constant Mg deficiency; i.e., Mg vacancies

Note: Anharmonic thermal 
motion or chemical substitution 
can mimic Mg vacancies in the 
refinement.

0.97

0.98

0.99

1.00

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

n 
(M

g)

x in Mg
x
B

2
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c/a scales with isotropic 
strain (sig-1)
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Tc decreases slightly with excess Mg.  This can be 
explained by accidental impurity doping.
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A phase diagram consistent with the observations
Im

Mg B

• •

Mg       Im1- δ δ

MgB    2 MgB    4

Im + MgB  (SL) + MgB   (SL)2 4

MgB   (SL)  + MgB   (SS)4 2

MgB   + MgB   (SS)
42

Mg + Im + MgB  (SL)2

Mg + MgB   (SS)2

This phase diagram explains:
•The decrease of Tc in the Mg-rich region
•The maximum Tc at a slightly Mg-deficient composition rather than an MgB2

D. G. Hinks et al., Physica C 382, 166-176 (2002)
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Advice for Rietveld Refiners
• If you really want to get the best results, try to go beyond 

using Rietveld refinement as a "black box."  Learn how the 
instrument calibration is done and confirm that it is done 
correctly.  Understand what is in the parameter file.  

• Check results against other things known about the material.  
Make full use of other information, including chemical 
constraints.

• Look carefully at the raw data and Rietveld plot.
• Ask whether your result makes chemical sense (bond lengths, 

BVSs, etc.).
• Ask whether the error bars obey the expected statistical 

rules.
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